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The FDT is not valid in the form (3) for non-equilibrium steady states where detailed 
balance does not apply. One aim of the present letter is the investigation of a model 
for which the potential conditions introduced in [3,7] are not fulfilled and consequently 
the random process defined by ( 1 )  and (2a) does not obey detailed balance. The 
deterministic force is given by [8] 

with a random matrix T,@ (in the continuous version ras means r a a ( x )  with a and p 
as matrix indices running from 1 to n). The static random matrix is coupled to the 
fields Q, in a multiplicative manner. In general, raB is not a symmetric matrix. For 
simplicity we assume a Gaussian white noise behaviour 

Tu@ ( X ) 7 y 6 ( x r )  = Fa/3y6a(x -x’) ( 5 )  

Fa@yS = 2[fa0ys@6 +gaafiaj3y1 = 2f [ s a y a / 3 6  $- am&a@y] -2Eaa6a@y ( 6 )  
with E =f-g.  

The model defined by ( l ) ,  (2a)  and (4)-(6) is discussed in connection with Ising 
spin glasses [9], neural networks with asymmetric bonds [lo] and an n-component 
vector model [8,11] with DUB = TTti,, where Tis  the temperature if the system reaches 
thermal equilibrium; otherwise, T measures the level of the dynamical stochastic noise; 
r is a kinetic coefficient. The investigation is restricted to the large-N case ( N  is the 
total number of Ising spins) or to the n + 00 limit since in these cases the dynamical 
mean field approximation can be applied [9]. By indicating the class of the diagrams 
the relation of the dynamical mean field approximation to a perturbational analysis 
is established in [ll]. 

It is easy to show that the potential conditions (see [3]) are only fulfilled if the 
matrix T ~ @ ( X )  is symmetric. Denoting by a,@ the symmetric part of T,@ the deterministic 
force (4) can be rewritten as a potential system with the effective Hamiltonian H’= 

Fokker-Plank equation for the conditional probability density W (  Q,, t ;  T , ~ )  using a 
standard procedure (see [ 121) 

where the fourth-rank tensor Fa/3y& is specified for the concrete model by [8] 

H - I J  U,,Q,Q~ ddx. To make this point clearer we derive the stochastically equivalent 

Equation (7) processes a stationary solution Wsrae-H=fi’T only if T.@ is a symmetric 
matrix with Hefi = H’. In terms of the new parameters f and g it means f = g. The 
parameter E = f - g f 0 characterises the violation of detailed balance conditions. 

Now, we demonstrate that the last fact is also manifested in a breakdown of 
supersymmetric transformations. To this aim we introduce the path-integral measure 
governed by the stochastic process ( 1 )  and (2a) 

p[Qa;  t,, T a p l g Q  = -& -&)1%/ga(plaQ. (8) 
The path probability density P depends on the set of parameters given here by &(x, t)  
and (x). It fulfils the normalisation condition I ~ Q  = 1. Due to the multiplicative 
coupling (4) of the stochastic matrix T , ~ ( x )  to the fields Q, the Jacobian 19t/Edql 
becomes configuration dependent. Therefore it is more appropriate to express the 
Jacobian by functional integrals over Grassmann variables &(x, t )  and &(x, t)/[l,  21. 
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Such an approach is different from that of [9]. The advantage of our procedure is 
that the introduction of these anticommuting fields allows, at least for potential systems, 
a superfield formulation. 

Using an integral representation for the 6-functional in (8) by means of auxiliary 
(commuting) Bose fields B,(x, t )  and performing the Gaussian average over the 
dynamical noise &(x, t)  we get 

(~(cP,;  fa, rmp))= ~ ( c P , ;  rmp) = gBD6D$ exp(-S) (9a) I 
with the action 

~ [ c P ,  

and the notation for the scalar product 

4, $1 = ( B ,  I D a p D p  1 + (iB, I4a - + (6. I[S,pd, - a & / a ~ ~ p  I$p 1 (9b) 

We remark that using (9a), performing integration over the Bose fields one can derive 
the generalised Fokker-Planck equation proposed recently by Graham [ 131. 

In the special case where K, is given by (4) the action S can be divided into two 
parts S =  So+& 

so = Tr(B,IB.) + (iB, 14, - r w w  + Mu I 4,) + r(6, I @ ’ ~ / ~ c P . ~ c P ~ ) $ ~ )  (loa) 

The first part, So,  originating from the potential system -TaH/acp,, can be rewritten 
in terms of a superfield 

~ ~ ( x ,  t,O,@)=rp,(x, t )+&,(x,  t ) + & ( x ,  t)@-O@iB,(x, t )  (11 )  

with new supersymmetric coordinates 6 and 0 as elements of a Grassmann algebra. 
The part So is invariant under a supersymmetric transformation [2,5,6]: 0 + 8 + A, 
0 3 6 + A ,  t 3 t + 6t with St = cl6A + czx@ where A and 1 are infinitesimal anticommut- 
ing parameters and the constants ci are chosen to be c1 = 1/ T r  and c2 = 0 [4]. The 
transformation of the ‘coordinates’ t, 0 and @ results in a transformation of the 
corresponding components: 

66. = -xi B, + c24, x 
Sq, = I$, + $,A 

6$, = c1&A - iB,A 

s(iB,) = C,&ZA - c2&X. 
(12) 

The 7-dependent part of the action S, is only invariant under the supersymmetric 
transformation (12) if rap = rp, independent on the realisation of the F-tensor in (6). 
As a consequence of the broken supersymmetry the linear FDT (3) is not valid. Indeed, 
as pointed out in [5] the FDT is related to supersymmetry. Applying the invariance of 
So by the transformation (12) one can derive the FDT from Ward-Takahashi identities. 

In the case considered here we define the generating functional 2 by the relation 

where j , ,  m,, tii, and iZ, are the sources for the Bose fields iB,, the Grassmann 
variables 6, and $, and the order parameter field (pa, respectively. It is important to 
note that we take the structural averaged probability P[(p,; T , ~ ]  since we are interested 
in the structural averaged correlation function and the corresponding response function. 
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Due to the Gaussian white noise for the static disorder introduced in (6) the 
configurational average can be performed (see [9]) and it results in 

~ ( c p , ;  T U a ) ~ P ( c p , ) = e x p [ - S ” ( c p , ,  B,, Gus +,)I 
with s = So+ S , :  

s1 = - r Z ~ , , y ~ ~ ~ & , ~ , i i G y ~ s ~ + ~ i ~ , ~ ~ I l ~ ~ y c p , ~ + ~ ~ G u J l a l l ~ ~ y ~ s ~ ~  (14) 
and the notation (aUII6,)=5dt dt’dxa,(x, t)6,(x, f’). 

and find Ss = SSo+ SSl with SSo = 0 and 
To derive the FDT we consider the behaviour of S” under the transformation (12) 

as, = 2 ~ r ~ { ( & i ~ ,  I I ~ B ~ , ( P ~ )  - (i&& i l i ~ , ~ , )  + ~ & u + , l l + u ~ ~ , ~  -(&,+, lI&ui~,)}~. (15) 
Following the procedure from reference [ 51 we get, after a straightforward calculation, 

d 
dt 
- Cup( t - t ’ )  = T [  Gus( t ’ -  t )  - G,p( t - t’)] + RUB( t - 2’). (16) 

Equation (16) is a generalised FDT. The additional r,, is proportional to E. In the 
case of vanishing E the last relation is reduced after Fourier transformation to (3). 
The term R,, can be represented by higher over correlation functions but it seems not 
to be possible to derive explicit corrections to (3) directly from (16). 

For this reason we have used a conventional perturbation theory [ll, 141 to find 
out nonlinear correction terms to the FDT (3) in terms of the parameter E. Since there 
is no linear FDT we have to calculate the structural averaged correlation function and 
the corresponding response function separately. Following our previous analysis [ 111 
we find C,,(w) = G,y(w)Ays(w)GG~(-o), where the renormalised noise vertex part 
A [14, 161 is given through a perturbational series in terms of the parameter f and E 

(6) and the nonlinearities in the Hamiltonian (we use an isotropic cp4-model). 
For non-zero E the perturbational series for C ( w )  is compared with that for 

Im G(w). After a straightforward calculation (for details see [15]) we get up to order 
E* for small E: 

with Q = 2 f [  G(w) + G(-w)]’. 
Equation (17) yields nonlinear corrections to the FDT in the form (3). It is obvious 

that the corrections disappear for vanishing E or n = 1 as indicated by (17). 
As a further example for an altered FDT compared with (3) and supersymmetry 

breaking we consider a potential system driven by coloured Gaussian noise (26). Using 
the observation [17] that the noise probability weight implied by (26) is 

1 
Pr {5( t)lJ - exp{ - 40 r (5, 150 1 + T2( 6, It )I} (18) 

we can derive the corresponding action [DUB = OS,,] 
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where S given by (9b) and (aalba)w means I ( d w / 2 n ) a a ( w ) b , ( - w ) .  It is obvious that 
S, is not invariant under the supersymmetric transformation (12) already for a potential 
system. 

We can also perform the integration over the Bose fields Ba(t) and find an action 
S(q,  6, $) (see (21)). The corresponding Lagrangian includes additional terms with 
second derivatives of cp,( t ) .  These terms disappear in the white noise limit T + 0. 

Let us consider the simple special case 

K ,  = -rqa. (20) 

We find 

From here we conclude 

and 

The FDT for the diagonal part of C and G reads 

2 0  1 
C ( o )  =- Im G- 

w 1 + w2T2 

which can be also derived directly by solving the corresponding stochastic differential 
equation. For T = 0 the usual form of the FDT (3) is obtained. 

In conclusion, we have studied a dynamical system driven by a Gaussian white 
noise which does not fulfil detailed balance. The equivalence is demonstrated to the 
breaking of supersymmetric transformation. As a consequence we find that the response 
to an external field is not linearly related to the dissipation of the system manifest in 
a nonlinear FDT (17). The influence to the spin-glass phase is demonstrated elsewhere 

If the stochastic process is driven by coloured noise the field theoretic formulation 
leads to an action which is also not invariant under supersymmetry. This fact gives 
rise to deviations from the usual FDT (24). 

1151. 

I am indebted to F Haake for stimulating discussions and H Muller-Krumbhaar for 
a critical reading of the manuscript. 
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